
http://detector.io 

kaie@kuix.de



2

Most Certificate Authorities (CA) have the power 
to issue certificates for any domain

This means, most CAs are single point of failures, 
they might get hacked, or their power could get 
abused (by creating certificates for a key that is 

owned by an attacker, not by the domain owner).

We must find a solution that removes the single 
point of failure, but is easy enough to be practical 

for most users of SSL/TLS.



 3

TLS does cert verification, by finding a chain of 
trust to a known and trusted CA. In many 

applications, this is sufficient to trust a connection.

(Optionally, software might do revocation 
checking. But few applications do, and if they do, 

they might ignore failures to check.)

Suggestion: Perform additional checks on top of 
certificate validation, prior to trusting a TLS 

connection.



 4

We want to detect a Man In The Middle (MITM).

(We assume the operator of a server doesn't 
cooperate with the MITM, and the MITM doesn't 

own the private key of the server's correct 
certificate. If that assumption is false, we cannot 

trust the server anyway. We also assume the 
MITM isn't able to control all connections on the 
internet, but only a subset of the connections.)

Suggestion: Check if our connection to the server 
uses the expected certificate.



 5

How can we know what's the expected certificate 
for a TLS server?

We should find a universal solution to this 
problem, that works on the first connection, or on 

a new computer, and doesn't require a cache from 
prior connections.

We DON'T want Trust-On-First-Use (TOFU), 
because the MITM could already be active.

Old Idea: Notaries



 6

Other projects have suggested to ask „Notaries“ 
to find out what the expected certificate for a 

server should be, for example, see the 
Perspectives or the Convergence projects.

But why should we trust Notaries? A notary is 
simply another concept of a trusted third party, 

just as CAs are.



 7

Even if we ask multiple notaries, how can we 
know the notaries aren't cooperating with the 

MITM, or have been hacked?

If there is only a small number of global notaries 
used by the majority of users, those are again 

single point of failures.

It's better if we check on our own, instead of 
relying on third party opinions.



 8

Another argument against a notary as a trust third 
party: If the certificate seen on our direct 

connection is different, who decides what's the 
correct one?

We don't want to prompt/ask the user for a 
decision. We want an automatic decision, and for 

that we need multiple data points.



 9

The suggested solution is the design presented in 
the paper available on the http://detector.io site:

(a) Users (client software) check on their own, 
what the expected certificate is likely to be.

To perform the check, we connect to the 
destination TLS server from multiple places in the 

world, e.g. from multiple continents.

(b) In addition, all server administrators must 
regularly monitor their own site from multiple 

places in the world, too, to check for unexpected 
certificates.



 10

(a) How can users connect to from multiple 
different places in the world? Most users don't 

have multiple VPNs or servers spread all over the 
world. Most users don't have a list of stable 

proxies they could use, and don't have the time or 
knowledge to continously research such a list and 

keep it up to date.

We need a global infrastructure that provides 
proxies that everyone can use, and that's easy to 

use.

Luckily such an infrastructure already exists:
The Tor network.



 11

Let's use the Tor (anonymity) network, provided 
by torproject.org and volunteers.

If you haven't heard about Tor: It's a project that 
attempts to provide anonymity. Volunteers run 

network nodes all over the world.

For our purposes (researching the expected 
certificate for a TLS server), we don't strictly 

require the anonymity property of Tor, although it's 
nice to have for privacy purposes.

What we need is Tor's property of forwarding local 
connections to different places in the world.



 12

The DetecTor idea:

Everyone runs multiple connections to Tor.

Each of the connections to Tor is configured to 
select exit nodes in separate locations. For 
example, connection 1 could be limited to 

european (or democratic) countries.

We check for consistency. If connections on all (or 
most) routes use the same certificates as the 

direct connection, we allow the direct connection. 
If there's inconsistency, we block it.



 13

(b) A MITM could be physically located very close 
to the target TLS server.

In that scenario, probing through Tor isn't 
sufficient, as the MITM would be able to intercept 

all connections from everywhere in the world.

For Detector to work, we must require that TLS 
server operators monitor their own server, too, 

using the same approach.



 14

TLS server operators should setup a monitoring 
process, that regularly (e.g. every 10 minutes) 

checks their own server(s), by connecting to the 
server through the Tor network, and check for the 

expected certificate.

If there is a mismatch, the server operator should 
immediately publicly report the false certificate, 

which would help to get it revoked by the 
responsible CA and to uncover the attempted 

attack. The detector.io project already provides an 
initial (beta) tool for such monitoring.



 15

By combining server monitoring by those who 
KNOW what the expected certificate is (the server 

owners)

and

consistency checking by client software for 
unexpected certificates, we should be able to 

detect and block connections to servers that use 
an unexpected certificate.



 16

How to implement client side probing for 
inconsistency.

We need an implementation that is as universal 
as possible, it shouldn't be limited to a few 

applications.

The proposal is to enhance the software libraries 
that implement the TLS protocol, and I'd like to 

start with the NSS library used by Mozilla Firefox 
and other software (Pidgin, Chromium, etc.)



 17

Client side implementation detail:

Application level code attempts to start an async 
connection attempt to a destination server. As 
soon as the TLS protocol library code gets the 

request, it can use additional threads to start the 
separate probing connections through the Tor 

network.

As long as the probing connections are running, 
the WOULDBLOCK state is returned to the 

application code, causing it to wait for the probing 
to be done.



 18

The connections used for probing through the Tor 
network will execute the TLS handshake, in order 

to obtain the server certificate. Immediately 
aftwards, the probing connections will be 

terminated.

As soon as all probing connections have 
completed, we allow the application's primary 
connection and its TLS handshake to continue 
and obtain the server certificate from that route.

Prior to allowing anything else, the TLS protocol 
library code performs a comparison of the 
certificates seen on the different routes.



 19

If the certificates obtained on ALL routes are 
identical, we can be confident to allow the 

connection to proceed normally.

If the certificate seen on the direct connection is 
identical with MOST certificates seen in the 

distributed probing, we might continue anyway. 
This could be a configuration option, based on a 

client's specific security requirements.

If the certificate seen on the direct route is 
different from the majority of those seen during 
the distributing probing, we MIGHT be under 

attack, and should block the connection.



 20

Special scenario: Some servers use multiple 
different server certificates, based on the client's 

capabilities (supported ciphers, TLS protocol 
versions and extensions).

Because we suggest to integrate the probing into 
the connecting client, the properties of all 

connections will be identical, which increase the 
changes to see consistent certificates on all 

connections.

This is an advantage over separate notary servers



 21

False negative: Some server hostnames might 
use many separate servers or even use content 

delivery networks.

If the infrastructure uses different certificates on 
the separate servers, we're likely to see 

inconsistency during probing.

It should become a best practice for operating 
TLS servers, that a consistent certificate (for each 

set of client capabilities) should be used on all 
servers.



 22

In case of certificate rollovers, where a cluster of 
multiple servers gets updated to a new certificate, 

there might be a period of time when there's 
expected inconsistency between servers.

With the Detector approach, in the worst case 
there would be a temporary inability to connect to 

the server during the rollover deployment.

This could be optimized by caching in the client 
the consistency status of certificates. However, 

when using a cached consistency status, it should 
be required to have fresh revocation status 
information (OCSP, e.g. stapled) available.



 23

What's next, and how you can help.

Are you a C programmer? Want to help 
implement the probing integration into a TLS 

protocol library?

I can help you get started with the NSS library 
used by Firefox et.al. Please talk to me.

The utility used for probing by server administrator 
is a C terminal application, which also needs 

tweaking.



 24

Are you a python programmer? We need help 
with the Tor network controller that starts up the 

Tor connections that we need as proxies for 
probing.

Right now we use the Stem library and use a very 
simple approach to start 5 separate Tor 

connections. This is inefficient. It would be more 
efficient to have only one Tor connection, and use 

another existing python controller library that 
allows that.



 25

Do you know how to write Nagios plugins? If we 
had a plugin that was compatible with the probing 
utility, then many administrators would be able to 
easily set it up and integrate it into their existing 

infrastructure monitoring.

Are you a packager for Linux etc. distributions? 
We need to get the probing utility packaged.



 26

http://DetecTor.IO 
(paper, mailing list, github)

kaie@kuix.de 
(email and xmpp/jabber)

IRC: kaie


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

